Science Library - free educational site

Derivatives of trigs, exponents and logs

Logs and Exponents

Natural log
Natural log and its first differential 1/x

$e^{lnx} = x$

ln$e^x = x$

If $f(x) = e^x$, $f'(x) = e^x$

If $f(x) = e^{g(x)}$, $f'(x) = g'(x)e^{g(x)}$

If $f(x) = $ln$x$, $f'(x) = 1/x$

If $f(x) = a^x$, $f'(x) = ($ln$a)a^x$

For $f(x) = a^x$, $f'(x)$ at $x=0$ is ln$a$.

If $f(x) = $log$_{a}x$, $f'(x) = 1/{xlna}$

If $f(x) = $ln$g(x)$, $f'(x) = {g'(x)}/{g(x)}$

Example: find the derivative of $f(x) = e^{3x^2}$:

$f'(x) = g'(x)e^{g(x)} = 6xe^{3x^2}$

Example: find the derivative of $f(x) = $ln$(3x^2)$: $f'(x) = {g'(x)}/{g(x)} = {6x}/{3x^2} = 2/x$

e exponent x is its own derivative

The letter $e$ was selected to represent the irrational number 2.718281828459, in honour of the great Swiss mathematician Leonhard Euler (1706 - 1781).

$e$ is defined as the limit of $(1 + 1/n)^n$ as n approaches ∞.

It may also be expressed as:

$$e = ∑↙{n=0}↖{∞} 1/{n!} = 1 + 1/1 + 1/{1⋅2} + 1/{1⋅2⋅3} + ...$$

Derivatives of Trigonometric Functions

Sine and cosine

Observing the graph of sine of $x$, it can be seen that the slope is graphed by cosine $x$. When $x$ is zero, sine is zero, with increasing tangent gradient. At zero, the slope is maximum, and gradually decreases, but not constantly, to where it levels out at $π/2$, where the tangent gradient is zero.

cosine is therefore the first derivative of the sine function.

Since the sine and cosine graphs superimpose if sine is translated $π/2$ to the left, cos$x = $sin$(x+π/2)$.

$d/{dx}($cos$x) = d/{dx}[$sin$(x+ π/2)] $

$= [$cos$(x+π/2)]⋅1 = $cos$(x+π/2)$

cos$(x+π/2) = -$sin$x$.

The derivative of $f(x) = sinx$ from first principles:
$f'(x) = {lim}↙{h→0} {f(x+h) - f(x)}/h$
     $= {lim}↙{h→0} {sin(x+h) - sin(x)}/h$
     $= {lim}↙{h→0} ({sin x⋅cos h + cos x ⋅ sin h - sin x}/h)$
     $= {lim}↙{h→0} ({cos x⋅ {sinh}/h + sinx⋅ {cosh -1}/h)$
     $= cosx⋅{lim}↙{h→0} {sinh}/h + sinx⋅{lim}↙{h→0} {cosh - 1}/h$
     $= cosx⋅1 + sinx⋅0 = cosx$

The derivative of tan$x$ can also be derived by a similar procedure:

$d/{dx}($tan$x) = d/{dx}({sinx}/{cosx}) = {cosx(cosx) - sinx(-sinx)}/{(cosx)^2} = {cos^2x+sin^2x}/{cos^2x} = 1/{cos^2x}$, cos$x ≠0$

Basic Trig Differentials

If $f(x) = $sin$ x$, then $f'(x) = $cos$ x$

If $f(x) = $cos$ x$, then $f'(x) = -$sin$ x$

If $f(x) = $tan$ x$, then

$f'(x) = $se$c^2 x$ $ ( = 1/{cos^2x}) = 1 + $tan$^2x$

Basic Trig Differentials

If $f(x) = $arcsin$ x$, then $f'(x) = 1/{√{1-x^2}}$

If $f(x) = $arccos$ x$, then $f'(x) = -1/{√{1-x^2}}$

If $f(x) = $arctan$ x$, then $f'(x) = 1/{1+x^2}$

If $f(x) = $arccot$ x$, then $f'(x) = -1/{1+x^2}$

further Trig Differentials

If $f(x) = $sin$ {x/2}$, then $f'(x) = {1/2}$cos$ {x/2}$

If $f(x) = $cos$ 3x$, then $f'(x) = -3$sin$ 3x$

If $f(x) = $sin$(2x - 1)$, then $f'(x) = 2$cos$(2x - 1)$

If $f(x) = $cot$x$, then

$f'(x) = -$csc$^2x = -1/{sin^2(x)} = -1 - $cot$^2(x) $

Content © Renewable.Media. All rights reserved. Created : January 23, 2015

Latest Item on Science Library:

The most recent article is:


View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week


Mathematics is the most important tool of science. The quest to understand the world and the universe using mathematics is as old as civilisation, and has led to the science and technology of today. Learn about the techniques and history of mathematics on


Great Scientists

Carl Linnaeus

1707 - 1778

Carl Linnaeus was a prolific writer, publishing books, lavishly illustrated, throughout his life. Through his travels, studies and collections, he developed a system of taxonomic nomenclature which is the basis of the modern system.

Carolus Linnaeus
Lugano English

Quote of the day...

Renewable.Media Internet Promotions

Transalpine traduzioni