Science Library - free educational site

Limits of Functions

Given the polynomials:

$$p(x) = a_kx^k + a_{k-1}x^{k-1} + ... + a_1x + a_0$$ $$q(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0$$

then:

$${lim}↙{x→x_0} p(x) = p(x_0) $$ $${lim}↙{x→x_0} {p(x)}/{q(x)} = {p(x_0)}/{q(x_0)}$$

if $q(x_0) ≠ 0$$ $${lim}↙{x→±∞} {p(x)}/{q(x)} = [\table ± ∞, k > m; {a_k}/{b_m}, k = m; 0, k = m, k < m;$$

e.g. ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5}$

In this case, k = 2 and m = 2, so ${lim}↙{x→± ∞} {3x^2}/{x^2 + 5} = {a_k}/{b_m} = {3}/{1} = 3$

e.g. ${lim}↙{x→5} {-x^2 + 5x}/{x^2 - 2x - 15} = {-x(x - 5)}/{(x - 5)(x + 3)} = {-x}/{(x + 3)} = -5/8$

${lim}↙{x→∞} {x^3 - 1}/{x^2 + x}$ and, ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x}$
In this case, k = 3 and m = 2, so ${lim}↙{x→∞} {x^3 - 1}/{x^2 + x} = ∞$ ${lim}↙{x→-∞} {x^3 - 1}/{x^2 + x} = -∞$

some important limits

${lim}↙{x→0} {sinx}/x = 1$

Function sinx/x

${lim}↙{x→± ∞} (1 + 1/x)^x = e$

${lim}↙{x→0} {log_a(1 + x)}/x = log_ae$, provided $0 < a ≠ 1$

${lim}↙{x→0} {ln(1 + x)}/x = 1$

Function

${lim}↙{x→0} {a^x - 1}/x = ln (a)$, provided $0 < a ≠ 1$

${lim}↙{x→0} {e^x - 1}/x = 1$

Asymptotes

Asymptotes

If ${lim}↙{x→∞} (f(x)-g(x)) = 0$, g approximates f asymptotically when $x→∞$

$m = {lim}↙{x→∞} {f(x)}/x$

$q = {lim}↙{x→∞} (f(x) - m⋅x)$

Example

Asymptotes

f: x|→ ${x^3 - 2x^2 - x + 3}/{x^2 - 1}$, $D_f$ = R\{±1}

Vertical asymptotes: x = ± 1

Oblique asymptote:

$m = {lim}↙{x→±∞} {f(x)}/x = {x^3 - 2x^2 - x + 3}/{x^3 - x} = 1$

$q = {lim}↙{x→±∞} (f(x) - m⋅x)$

$= {lim}↙{x→±∞} {{x^3 - 2x^2 - x + 3 - x^3 + x}/{x^2 - 1} = -2$

Therefore, y = x - 2 is the oblique asymptote.

Example

Parabolic asymptote

g: x|→ ${x^5 - x + 1}/{x^3 + x}$, $D_g = R^+$

Vertical asymptote: x = 0

Carrying through the division:

$g(x) = x^2 - 1 + 1/{x^3 + x}$

For which ${lim}↙{x→±∞} (g(x) - x^2 + 1)$

$ = {lim}↙{x→±∞} 1/{x^3 + x} = 0$

The function is therefore approximately asymptotic to the parabola $y = x^2 - 1$

Content © Renewable.Media. All rights reserved. Created : November 20, 2014

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

Environmental Science

Great Scientists

Rebecca Harms

b. 1956

Rebecca Harms, born 1956 in Lower Saxony, is a German environmentalist and Member of the European Parliament.

Rebecca Harms portriat
Lugano English

Quote of the day...

The paleoclimate record shouts out to us that, far from being self-stabilizing, the Earth's climate system is an ornery beast which overreacts even to small nudges.

Renewable.Media Internet Promotions

English language school