Science Library - free educational site

Trigonometric integration

In engineering, rotational action is often translated into lineal action, or vice-versa. Sine, cosine, and tangent, are three trigonometric functions which describe lateral and transverse displacements, and their ratio, as a radius rotates through the circle it describes.

Basic trig identities
Mathematics question

Summary of Integral Properties and Solutions

$∫sin x dx = -cos x + C$

$∫cos x dx = sin x + C$

$∫sin (ax + b) dx = -1/{a}cos (ax + b) + C$

$∫cos (ax + b) dx = 1/{a}sin(ax + b) + C$

Trigonometric substitutions

If the integrand contains a quadratic radical expression, these trig substitutions may be used:

$√(a^2 - x^2)$ ā‡’ $x = a⋅sin(θ)$

$√(x^2 - a^2)$ ā‡’ $x = a⋅sec(θ)$

$√(x^2 + a^2)$ ā‡’ $x = a⋅tan(θ)$

f(x)F(x)f(x)F(x)
$a$$ax$$x^n$${x^{n+1}}/{n+1}$
$1/x$ln|$x$|$1/{x^n}$${-1}/{(n-1)x^{n-1}}$
$√x$${2/3}x√x$$1/{√x}$$2√x$
$1/{(x-a)(x-b)}$${1/{a-b}}$ln$|{x-a}/{x-b}|$${ax+b}/{cx+d}$${ax}/c-{ad-bc}/{c^2}$ln$|cx+d|$
$1/{x^2+a^2}$${1/a}$arctan$(x/a)$$1/{x^2-a^2}$$1/{2a}$ln$|{x-a}/{x+b}|$
$e^x$$e^x$ln$(x)$$x($ln$(x)-1)$
$a^x$${a^x}/{ln(a)}$log$_a(x)$$x($log$_a(x)-$log$_a(e))$
$xe^{ax}$$1/{a^2}(ax-1)e^{ax}$$x$ln$(ax)$${x^2}/4(2$ln$(ax)-1)$
sin$(x)$-cos$(x)$arcsin$(x)$$x$arcsin$(x)+√{1-x^2}$
cos$(x)$sin$(x)$arccos$(x)$$x$arccos$(x)-√{1-x^2}$
tan$(x)$-ln|cos$(x)$|arctan$(x)$$x$arctan$(x)-1/2$ln$(1+x^2)$
cot$(x)$ln|sin$(x)$|arccot$(x)$$x$arccot$(x)+1/2$ln$(1+x^2)$
sin$^2(x)$$1/2(x-$sin$(x)$cos$(x))$$1/{sin^2(x)}$-cot$(x)$
cos$^2(x)$$1/2(x+$sin$(x)$cos$(x))$$1/{cos^2(x)}$tan$(x)$
tan$^2(x)$tan$(x)-x$$1/{sin(x)}$ln$|{1-cos(x)}/{sin(x)}|$
cot$^2(x)$-cot$(x)-x$$1/{cos(x)}$ln$|{1+sin(x)}/{cos(x)}|$
$1/{1+sin(x)}$${-cos(x)}/{1+sin(x)}$$1/{1-sin(x)}$${cos(x)}/{1-sin(x)}$
$1/{1+cos(x)}$${sin(x)}/{1+cos(x)}$$1/{1-cos(x)}$${-sin(x)}/{1-cos(x)}$
$x$sin$(ax)$$-{1/a}x$cos$(ax)+1/{a^2}$sin$(ax)$$x$cos$(ax)$${1/a}x$sin$(ax)+1/{a^2}$cos$(ax)$
$e^{ax}$sin$(bx)$${e^{ax}}/{a^2+b^2}(a$sin$(bx)-b$cos$(bx))$$e^{ax}$cos$(bx)$${e^{ax}}/{a^2+b^2}(a$cos$(bx)+b$sin$(bx))$
sinh$(x)$cosh$(x)$arsinh$(x)$$x$arsinh$(x) - √{x^2+1}$
cosh$(x)$sinh$(x)$arcosh$(x)$$x$arcosh$(x) - √{x^2-1}$
tanh$(x)$ln(cosh$(x)$)artanh$(x)$$x$artanh$(x) +1/2$ln$(1-x^2)$
coth$(x)$ln|sinh$(x)$|arcoth$(x)$$x$arcoth$(x) +1/2$ln$(x^2-1)$
$√{x^2+a}$$1/2x√{x^2+a} + a/2$ln$|x+√{x^2+a}|$$1/{√{x^2+a}}$ln$|x+√{x^2+a}|$
$√{r^2-x^2}$$1/2x√{x^2-x^2} + {r^2}/2$arcsin$(x/r)$$1/{√{r^2-x^2}}$arcsin$(x/r)$

Content © Renewable.Media. All rights reserved. Created : February 5, 2015

Latest Item on Science Library:

The most recent article is:

Trigonometry

View this item in the topic:

Vectors and Trigonometry

and many more articles in the subject:

Subject of the Week

Environment

Environmental Science is the most important of all sciences. As the world enters a phase of climate change, unprecedented biodiversity loss, pollution and human population growth, the management of our environment is vital for our futures. Learn about Environmental Science on ScienceLibrary.info.

Environmental Science

Great Scientists

Subrahmanyan Chandrasekhar

1910 - 1995

Subrahmanyan Chandrasekhar, 1910 - 1995, was an Indian astrophysicist, born in Punjab, and worked in the USA. He made significant contributions to many fields, including General Relativity and Black Holes.

Subrahmanyan Chandrasekhar, 1910 - 1995, Indian astrophysicist
Lugano English

Quote of the day...

If I had 8 hours to chop down a tree, Iā€™d spend 6 of them sharpening my axe.

Renewable.Media Internet Promotions

English language school